Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
J Nanobiotechnology ; 22(1): 165, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600567

RESUMO

As a common musculoskeletal disorder, frozen shoulder is characterized by thickened joint capsule and limited range of motion, affecting 2-5% of the general population and more than 20% of patients with diabetes mellitus. Pathologically, joint capsule fibrosis resulting from fibroblast activation is the key event. The activated fibroblasts are proliferative and contractive, producing excessive collagen. Albeit high prevalence, effective anti-fibrosis modalities, especially fibroblast-targeting therapies, are still lacking. In this study, microRNA-122 was first identified from sequencing data as a potential therapeutic agent to antagonize fibroblast activation. Then, Agomir-122, an analog of microRNA-122, was loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Agomir-122@NP), a carrier with excellent biocompatibility for the agent delivery. Moreover, relying on the homologous targeting effect, we coated Agomir-122@NP with the cell membrane derived from activated fibroblasts (Agomir-122@MNP), with an attempt to inhibit the proliferation, contraction, and collagen production of abnormally activated fibroblasts. After confirming the targeting effect of Agomir-122@MNP on activated fibroblasts in vitro, we proved that Agomir-122@MNP effectively curtailed fibroblasts activation, ameliorated joint capsule fibrosis, and restored range of motion in mouse models both prophylactically and therapeutically. Overall, an effective targeted delivery method was developed with promising translational value against frozen shoulder.


Assuntos
Bursite , MicroRNAs , Nanopartículas , Camundongos , Animais , Humanos , Fibroblastos/metabolismo , Bursite/tratamento farmacológico , Bursite/metabolismo , Membrana Celular , Fibrose , Colágeno/metabolismo , MicroRNAs/metabolismo
2.
Angew Chem Int Ed Engl ; : e202400927, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570886

RESUMO

In a recent communication (Angew. Chem. Int. Ed. 2024, 63, e202317312), Kalita et al. studied In4H+ system within the frame of single-reference approximation (SRA) and found that the global energy minimum (1 a) adopted the singlet state and a planar tetracoordinate hydrogen (ptH), while the second lowest isomer (1 b) located 3.0 kcal/mol above 1 a and adopted the triplet state as well as non-planar structure with a quasi-ptH. They assessed the reliability of SRA by checking the T1-diagnostic values of coupled cluster calculations. However, according to our multi-configurational second-order perturbation theory calculations at the CASPT2(12,13)/aug-cc-pVQZ (aug-cc-pVQZ-PP for In) level, both 1 a and 1 b exhibit obvious multi-referential characters, as reflected by their largest reference coefficients of 0.928 (86.1 %) and 0.938 (88.0 %), respectively. Moreover, 1 b is 5.05 kcal/mol lower than 1 a at this level, that is, what can be observed in In4H+ system is the quasi-ptH.

3.
Anim Biosci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575126

RESUMO

Objective: The objective of this study was to identify candidate genes that play im-portant roles in skeletal muscle development in ducks. Methods: In this study, we investigated the transcriptional sequencing of embryonic pectoral muscles from two specialized line LCA and LCC ducks which were devel-oped from Liancheng White ducks (female) and Cherry Valley ducks (male) F6 hybrid population. In addition, prediction of target genes for the differentially expressed mRNAs was conducted and the enriched gene ontology (GO) terms and Kyoto En-cyclopedia of Genes and Genomes (KEGG) signaling pathways were further analyzed. Finally, a protein-to-protein interaction (PPI) network was analyzed by using the tar-get genes to gain insights into their potential functional association. Results: A total of 1428 differentially expressed genes (DEGs) with 762 being up-regulated genes and 666 being down-regulated genes in pectoral muscle of LCA and LCC ducks identified by RNA-seq (p < 0.05). Meanwhile, 23 GO terms in the down-regulated genes and 75 GO terms in up-regulated genes were significantly en-riched (p < 0.05). Furthermore, the top 5 most enriched pathways were ECM-receptor interaction, fatty acid degradation, pyruvate degradation, PPAR signaling pathway, and glycolysis/gluconeogenesis. Finally, the candidate genes including Integrin b3 (Itgb3), Pyruvate kinase M1/2 (Pkm), Insulin-like growth factor 1 (Igf1), glu-cose-6-phosphate isomerase(Gpi), GABA type A receptor-associated protein-like 1(Gabarapl1), and Thyroid hormone receptor beta (Thrb) showed the most expression difference, and then were selected to verification by qRT-PCR. The result of qRT-PCR was consistent with that of transcriptome sequencing. Conclusion: This study provided information of molecular mechanisms underlying the developmental differences in skeletal muscles between specialized duck lines.

4.
J Cogn Neurosci ; : 1-20, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579269

RESUMO

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we proposed an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules, and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.

5.
BMC Cardiovasc Disord ; 24(1): 208, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615012

RESUMO

BACKGROUND: Obesity and hypertension are major risk factors for cardiovascular diseases that affect millions of people worldwide. Both conditions are associated with chronic low-grade inflammation, which is mediated by adipokines such as adiponectin. Adiponectin is the most abundant adipokine that has a beneficial impact on metabolic and vascular biology, while high serum concentrations are associated with some syndromes. This "adiponectin paradox" still needs to be clarified in obesity-associated hypertension. The aim of this study was to investigate how adiponectin affects blood pressure, inflammation, and metabolic function in obesity hypertension using a Chinese adult case-control study. METHODS: A case-control study that had finished recruiting 153 subjects divided as four characteristic groups. Adiponectin serum levels were tested by ELISA in these subjects among these four characteristic Chinese adult physical examination groups. Waist circumference (WC), body mass index (BMI), systolic blood pressure (SB), diastolic blood pressure (DB), and other clinical laboratory data were collected. Analyzation of correlations between the research index and differences between groups was done by SPSS. RESULTS: Serum adiponectin levels in the| normal healthy group (NH group) were significantly higher than those in the newly diagnosed untreated just-obesity group (JO group), and negatively correlated with the visceral adiposity index. With multiple linear egression analysis, it was found that, for serum adiponectin, gender, serum albumin (ALB), alanine aminotransferase (ALT) and high-density lipoprotein cholesterol (HDLC) were the significant independent correlates, and for SB, age and HDLC were the significant independent correlates, and for DB, alkaline phosphatase (ALP) was the significant independent correlate. The other variables did not reach significance in the model. CONCLUSIONS: Our study reveals that adiponectin's role in obesity-hypertension is multifaceted and is influenced by the systemic metabolic homeostasis signaling axis. In obesity-related hypertension, compensatory effects, adiponectin resistance, and reduced adiponectin clearance from impaired kidneys and liver all contribute to the "adiponectin paradox".


Assuntos
Adiponectina , Hipertensão , Adulto , Humanos , Estudos de Casos e Controles , Hipertensão/diagnóstico , Obesidade/complicações , Obesidade/diagnóstico , HDL-Colesterol , Inflamação , China/epidemiologia
6.
Heliyon ; 10(7): e28959, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601542

RESUMO

Stroke represents a significant threat to global human health, characterized by high rates of morbidity, disability, and mortality. Predominantly, strokes are ischemic in nature. Ischemic stroke (IS) is influenced by various cell death pathways, notably autophagy and ferroptosis. Recent studies have increasingly highlighted the interplay between autophagy and ferroptosis, a process likely driven by the accumulation of reactive oxygen species (ROS). Post-IS, either the inhibition of autophagy or its excessive activation can escalate ROS levels. Concurrently, the interaction between ROS and lipids during ferroptosis further augments ROS accumulation. Elevated ROS levels can provoke endoplasmic reticulum stress-induced autophagy and, in conjunction with free iron (Fe2+), can trigger ferroptosis. Moreover, ROS contribute to protein and lipid oxidation, endothelial dysfunction, and an inflammatory response, all of which mediate secondary brain injury following IS. This review succinctly explores the mechanisms of ROS-mediated crosstalk between autophagy and ferroptosis and the detrimental impact of increased ROS on IS. It also offers novel perspectives for IS treatment strategies.

7.
iScience ; 27(5): 109620, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628965

RESUMO

Constructing platinum-like materials with excellent catalytic activity and low cost has great significance for hydrogen evolution reaction (HER) during electrolysis of water. Herein, palladium nanoparticles (NPs) deposition on the surface of Co NPs using nitrogen-doped carbon (NC) as substrate, denoted as N-ZIFC/CoPd-30, are manufactured and served as HER electrocatalysts. Characterization results and density functional theory calculations validate that Pd-Co heterojunctions with NC acting as "electron donators" promote the Pd species transiting to the electron-rich state based on an efficient electron transfer mechanism, namely the N-C polar bonds induced strong metal-support interaction effect. The electron-rich Pd sites are beneficial to HER. Satisfactorily, N-ZIFC/CoPd-30 have only low overpotentials of 16, 162, and 13 mV@-10 mA cm-2 with the small Tafel slopes of 98 mV/decade, 126 mV/decade, and 72 mV/decade in pH of 13, 7, and 0, respectively. The success in fabricating N-ZIFC/CoPd opens a promising path to constructing other platinum-like electrocatalysts with high HER activity.

8.
RSC Adv ; 14(16): 11007-11016, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38586448

RESUMO

This study systematically investigates the mechanism of NOx emissions during the sintering process, with a focus on the utilization of biochar as an auxiliary fuel to replace a portion of the coke traditionally used in iron ore sintering. The research involved the simulation of sintering raw material ratios using iron ore, biochar, and coke powder. Substitution levels of biochar for coke were set at 0%, 20%, 40%, 50%, 60%, 80%, and 100%. NOx emissions during the sintering process were monitored using a sintering flue gas detection system. Simultaneously, a comprehensive analysis of the sintered ore was conducted with the aim of producing samples that meet sintered ore requirements while reducing NOx emissions. Experimental results revealed that when biomass charcoal substitution for coke reached 50%, the lowest NO emissions were observed during the sintering process, with a reduction of over 90% in accumulated NO emissions in the exhaust gas. In this process, due to the participation of biochar, CO2 emissions were reduced by approximately 50% compared to traditional sintering processes. The study also analyzed the physicochemical properties of the sintered ore using methods such as XRD, Raman, FTIR, and Vickers hardness testing. The results indicated that the hardness fluctuated within the range of 610 to 710N for sintered products with different levels of biochar substitution, and there were minimal changes in Fe element content and crystal phase transformations.

10.
Psych J ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618758

RESUMO

Filial piety in traditional Chinese culture is an essential variable in explaining intergenerational interaction. However, previous studies have not clarified whether older adults' filial responsibility expectations matched children's filial support and the effects of the filial discrepancy on their life satisfaction and loneliness. The latent profile analysis showed that older adults were divided into two groups: (1) high expectations and support, and (2) low expectations and support. The results showed that compared with older adults with low expectations and low support, those with high expectations and high support reported higher life satisfaction and lower loneliness. Additionally, social support played a moderating role in the effect of the groups of older adults on life satisfaction and loneliness. Our conclusion shows that filial support is an essential factor influencing older adult life satisfaction and loneliness, and social support is an effective supplement to filial support.

11.
Ecotoxicol Environ Saf ; 275: 116273, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564861

RESUMO

BACKGROUND: Sarcopenia is characterized by decreased muscle mass and strength, posing threat to quality of life. Air pollutants are increasingly recognized as risk factors for diseases, while the relationship between the two remains to be elucidated. This study investigated whether exposure to ambient air pollution contributes to the development of sarcopenia. METHODS: We employed the data from the UK Biobank with 303,031 eligible participants. Concentrations of PM2·5, NO2, and NOx were estimated. Cox proportional hazard regression models were applied to investigate the associations between pollutants and sarcopenia. RESULTS: 30,766 probable sarcopenia cases was identified during the follow-up. We observed that exposure to PM2.5 (HR, 1.232; 95% CI, 1.053-1.440), NO2 (HR, 1.055; 95% CI, 1.032-1.078) and NOx (HR, 1.016; 95% CI, 1.007-1.026) were all significantly associated with increased risk for probable sarcopenia for each 10 µg/m3 increase in pollutant concentration. In comparison with individuals in the lowest quartiles of exposure, those in the upper quartiles had significantly increased risk of probable sarcopenia. Sarcopenia-related factors, e.g., reduced lean muscle mass, diminished walking pace, and elevated muscle fat infiltration ratio, also exhibited positive associations with exposure to ambient air pollution. On the contrary, high level physical activity significantly mitigated the influence of air pollutants on the development of probable sarcopenia. CONCLUSIONS: Air pollution exposure elevated the risk of developing sarcopenia and related manifestations in a dose-dependent manner, while physical activity maintained protective under this circumstance. Efforts should be made to control air pollution and emphasize the importance of physical activity for skeletal muscle health under this circumstance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Sarcopenia , Humanos , Estudos Prospectivos , Dióxido de Nitrogênio , Sarcopenia/etiologia , Sarcopenia/induzido quimicamente , Qualidade de Vida , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
12.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 111-118, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38433640

RESUMO

Sarcopenia is an age-related condition characterized by a decrease in muscle mass and a decline in muscle strength.Sarcopenia increases the risk of falls,severely affecting the quality of life of patients,and it may be associated with various age-related chronic diseases.Advanced glycation end products(AGEs)are a class of stable glycation products produced by condensation,rearrangement,cleavage,and oxidative modification between the free amino groups of proteins,lipids or nucleic acids and the free carbonyl groups of reducing sugars.Studies have revealed associations of AGEs with muscle mass,muscle strength,and sarcopenia.AGEs can lead to hardening of the extracellular matrix of skeletal muscle through glycation cross-linking.The binding of AGEs to receptors induces inflammation and oxidative stress,consequently resulting in decreases in muscle mass and muscle strength.Therefore,AGEs may play a role in the occurrence and development of sarcopenia.This review summarizes the role of AGEs in the pathogenesis of sarcopenia,offering theoretical support for probing into the mechanisms underlying sarcopenia.


Assuntos
Sarcopenia , Humanos , Qualidade de Vida , Força Muscular , Músculo Esquelético , Produtos Finais de Glicação Avançada
13.
Mol Biol Rep ; 51(1): 377, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427114

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) exerts neuroprotective effects early in cerebral ischemia/reperfusion (I/R) injury. Intermittent theta-brust stimulation (iTBS), a more time-efficient modality of rTMS, improves the efficiency without at least decreasing the efficacy of the therapy. iTBS elevates cortical excitability, and in recent years it has become increasingly common to apply iTBS to patients in the early post-IS period. However, little is known about the neuroprotective mechanisms of iTBS. Endoplasmic reticulum stress (ERS), and ferroptosis have been shown to be involved in the development of I/R injury. We aimed to investigate the potential regulatory mechanisms by which iTBS attenuates neurological injury after I/R in rats. METHODS: Rats were randomly divided into three groups: sham-operated group, MCAO/R group, and MCAO/R + iTBS group, and were stimulated with iTBS 36 h after undergoing middle cerebral artery occlusion (MCAO) or sham-operated. The expression of ERS, ferroptosis, and apoptosis-related markers was subsequently detected by western blot assays. We also investigated the mechanism by which iTBS attenuates nerve injury after ischemic reperfusion in rats by using the modified Neurological Severity Score (mNSS) and the balance beam test to measure nerve function. RESULTS: iTBS performed early in I/R injury attenuated the levels of ERS, ferroptosis, and apoptosis, and improved neurological function, including mNSS and balance beam experiments. It is suggested that this mode of stimulation reduces the cost per treatment by several times without compromising the efficacy of the treatment and could be a practical and less costly intervention.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Estimulação Magnética Transcraniana , Traumatismo por Reperfusão/terapia , Reperfusão , Estresse do Retículo Endoplasmático
14.
Nat Aging ; 4(4): 568-583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491289

RESUMO

Hearing loss is associated with an increased risk of Alzheimer disease (AD). However, the mechanisms of hearing loss promoting the onset of AD are poorly understood. Here we show that hearing loss aggravates cognitive impairment in both wild-type mice and mouse models of AD. Embryonic growth/differentiation factor 1 (GDF1) is downregulated in the hippocampus of deaf mice. Knockdown of GDF1 mimics the detrimental effect of hearing loss on cognition, while overexpression of GDF1 in the hippocampus attenuates the cognitive impairment induced by deafness. Strikingly, overexpression of GDF1 also attenuates cognitive impairment in APP/PS1 transgenic mice. GDF1 activates Akt, which phosphorylates asparagine endopeptidase and inhibits asparagine endopeptidase-induced synaptic degeneration and amyloid-ß production. The expression of GDF1 is downregulated by the transcription factor CCAAT-enhancer binding protein-ß. These findings indicate that hearing loss could promote AD pathological changes by inhibiting the GDF1 signaling pathway; thus, GDF1 may represent a therapeutic target for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Perda Auditiva , Camundongos , Animais , Fator 1 de Diferenciação de Crescimento/metabolismo , Doença de Alzheimer/complicações , Camundongos Transgênicos , Perda Auditiva/genética , Disfunção Cognitiva/etiologia
15.
Anal Methods ; 16(13): 1894-1900, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482952

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is one of the leading causes of mortality from chronic diseases worldwide, and it is strongly linked to dyslipidemia. Dyslipidemia typically presents as an elevated concentration of low density lipoprotein (LDL). Hence, accurate quantification of LDL particles is crucial for predicting the risks of cardiovascular illnesses. Nevertheless, conventional techniques can merely provide indirect measurements of LDL particle concentrations through the detection of cholesterol or proteins within LDL particles, and they often require significant effort and time. Therefore, an accurate and effective method for identifying intact LDL particles is highly desired. We have devised a method that allows for the measurement of LDL concentration without the need for isolation. This method relies on proximity ligation rolling circle amplification (RCA). This technique enables the direct and precise measurement of the concentration of "actual" LDL particles, rather than measuring the cholesterol content inside LDL. It has a detection limit of 7.3 µg dL-1, which also meets the requirements for analyzing lipoproteins in clinical samples. Hence, this platform exhibits immense potential in clinical applications and health management.


Assuntos
Dislipidemias , Lipoproteínas LDL , Humanos , Lipoproteínas , Colesterol
16.
Adv Sci (Weinh) ; : e2310141, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520708

RESUMO

Fiber-reinforced hydrogel composites are widely employed in many engineering applications, such as drug release, and flexible electronics, with more flexible mechanical properties than pure hydrogel materials. Comparing to the hydrogel strengthened by continuous fiber, the meta-fiber reinforced hydrogel provides stronger individualized design ability of deformation patterns and tunable stiffness, especially for the elaborate applications in joint, cartilage, and organ. In this paper, a novel structure design strategy based on deep learning algorithm is proposed for hydrogel reinforced by meta-fiber to achieve targeted mechanical properties, such as stress and displacement fields. A solid mechanic model for meta-fiber reinforced hydrogel is first developed to construct the dataset of fiber distribution and the corresponding mechanical properties of the composite. Generative adversarial network (GAN) is then trained to characterize the relationship between stress or displacement field, and meta-fiber distribution. The well-trained GAN is implemented to design meta-fiber reinforced hydrogel composite structure under specific operation conditions. The results show that the deep learning method may efficiently predict the structure of the hydrogel composite with satisfied confidence, and has great potential for applications in drug delivery and flexible electronics.

17.
Front Neurosci ; 18: 1303741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525375

RESUMO

Brain network analysis provides essential insights into the diagnosis of brain disease. Integrating multiple neuroimaging modalities has been demonstrated to be more effective than using a single modality for brain network analysis. However, a majority of existing brain network analysis methods based on multiple modalities often overlook both complementary information and unique characteristics from various modalities. To tackle this issue, we propose the Beta-Informativeness-Diffusion Multilayer Graph Embedding (BID-MGE) method. The proposed method seamlessly integrates structural connectivity (SC) and functional connectivity (FC) to learn more comprehensive information for diagnosing neuropsychiatric disorders. Specifically, a novel beta distribution mapping function (beta mapping) is utilized to increase vital information and weaken insignificant connections. The refined information helps the diffusion process concentrate on crucial brain regions to capture more discriminative features. To maximize the preservation of the unique characteristics of each modality, we design an optimal scale multilayer brain network, the inter-layer connections of which depend on node informativeness. Then, a multilayer informativeness diffusion is proposed to capture complementary information and unique characteristics from various modalities and generate node representations by incorporating the features of each node with those of their connected nodes. Finally, the node representations are reconfigured using principal component analysis (PCA), and cosine distances are calculated with reference to multiple templates for statistical analysis and classification. We implement the proposed method for brain network analysis of neuropsychiatric disorders. The results indicate that our method effectively identifies crucial brain regions associated with diseases, providing valuable insights into the pathology of the disease, and surpasses other advanced methods in classification performance.

18.
Clin Interv Aging ; 19: 517-527, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528884

RESUMO

Purpose: To investigate the clinical value of serum lysophosphatidylcholine (LPC) as a predictive biomarker for determining disease severity and mortality risk in hospitalized elderly patients with community-acquired pneumonia (CAP). Methods: This prospective, single-center study enrolled 208 elderly patients, including 67 patients with severe CAP (SCAP) and 141 with non-SCAP between November 1st, 2020, and November 30th, 2021 at the Qingdao Municipal Hospital, Shandong Province, China. The demographic and clinical parameters were recorded for all the included patients. Serum LPC levels were measured on day 1 and 6 after admission using ELISA. Propensity score matching (PSM) was used to balance the baseline variables between SCAP and non-SCAP patient groups. Receiver operative characteristic (ROC) curve analysis was used to compare the predictive performances of LPC and other clinical parameters in discriminating between SCAP and non-SCAP patients and determining the 30-day mortality risk of the hospitalized CAP patients. Univariate and multivariate logistic regression analyses were performed to identify the independent risk factors associated with SCAP. Cox proportional hazard regression analysis was used to determine if serum LPC was an independent risk factor for the 30-day mortality of CAP patients. Results: The serum LPC levels at admission were significantly higher in the non-SCAP patients than in the SCAP patients (P = 0.011). Serum LPC level <24.36 ng/mL, and PSI score were independent risk factors for the 30-day mortality in the elderly patients with CAP. The risk of 30-day mortality in the elderly CAP patients with low serum LPC levels (< 24.36ng/mL) was >5-fold higher than in the patients with high serum LPC levels (≥ 24.36ng/mL). Conclusion: Low serum LPC levels were associated with significantly higher disease severity and 30-day mortality in the elderly patients with CAP. Therefore, serum LPC is a promising predictive biomarker for the early identification of elderly CAP patients with poor prognosis.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Humanos , Idoso , Lisofosfatidilcolinas , Estudos Prospectivos , Prognóstico , Biomarcadores , Índice de Gravidade de Doença , Gravidade do Paciente , Estudos Retrospectivos
19.
HPB (Oxford) ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38523016

RESUMO

INTRODUCTION: We assessed the association between patient survival after liver transplantation (LT) and donor-recipient race-ethnicity (R/E) concordance. METHODS: The Scientific Registry of Transplant Recipients (SRTR) was retrospectively analyzed using data collected between 2002 and 2019. Only adults without history of prior organ transplant and recipients of LT alone were included. The primary outcome was patient survival. Donors and recipients were categorized into five R/E groups: White/Caucasian, African American/Black, Hispanic/Latino, Asian, and Others. Statistical analyses were performed using Kaplan-Meier survival curves and Cox Proportional Hazards models, adjusting for donor and recipient covariates. RESULTS: 85,427 patients were included. Among all the R/E groups, Asian patients had the highest 5-year survival (81.3%; 95% CI = 79.9-82.7), while African American/Black patients had the lowest (71.4%; 95% CI = 70.3-72.6) (P < 0.001). Lower survival rates were observed in recipients who received discordant R/E grafts irrespective of their R/E group. The fully adjusted hazard ratio for death was statistically significant in African American/Black (aHR 1.07-1.18-1.31; P < 0.01) and in White∕Caucasian patients (aHR 1.00-1.04-1.07; P = 0.03) in the presence of donor-recipient R/E discordance. CONCLUSION: Disparities in post-LT outcomes might be influenced by biological factors in addition to well-known social determinants of health.

20.
Transl Stroke Res ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485864

RESUMO

Mitochondrial dysfunction and excessive reactive oxygen species production due to impaired mitochondrial biogenesis have been proven to exacerbate secondary brain injury after intracerebral hemorrhage (ICH). The G-protein-coupled receptor 39 (GPR39) agonist TC-G 1008 has been shown to exert anti-oxidative stress effect in acute hypoxic brain injury. Herein, our study aimed to investigate the potential effects of TC-G 1008 on neuronal mitochondrial biogenesis and antioxidative stress in a mouse model of ICH and explore the underlying mechanisms. A total of 335 male C57/BL6 mice were used to establish an autologous blood-induced ICH model. Three different dosages of TC-G 1008 were administered via oral gavage at 1 h, 25 h, and 49 h post-ICH. The GPR39 siRNA and cAMP response element-binding protein (CREB) inhibitor 666-15 were administered via intracerebroventricular injection before ICH insult to explore the underlying mechanisms. Neurobehavioral function tests, Western blot, quantitative polymerase chain reaction, immunofluorescence staining, Fluoro-Jade C staining, TUNEL staining, dihydroethidium staining, transmission electron microscopy, and enzyme-linked immunosorbent assay were performed. Expression of endogenous GPR39 gradually increased in a time-dependent manner in the peri-hematoma tissues, peaking between 24 and 72 h after ICH. Treatment with TC-G 1008 significantly attenuated brain edema, hematoma size, neuronal degeneration, and neuronal death, as well as improved neurobehavioral deficits at 72 h after ICH. Moreover, TC-G 1008 upregulated the expression of mitochondrial biogenesis-related molecules, including PGC-1α, NRF1, TFAM, and mitochondrial DNA copy number, associated with antioxidative stress markers, such as Nrf2, HO-1, NQO1, SOD, CAT, and GSH-Px. Furthermore, treatment with TC-G 1008 preserved neuronal mitochondrial function and structure post-ICH. Mechanistically, the protective effects of TC-G 1008 on neuronal mitochondrial biogenesis and antioxidative stress were partially reversed by GPR39 siRNA or 666 -15. Our findings indicated that GPR39 agonist TC-G 1008 promoted mitochondrial biogenesis and improved antioxidative capability after ICH, partly through the CREB/PGC-1α signaling pathway. TC-G 1008 may be a potential therapeutic agent for patients with ICH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...